
Comparative Analysis of Programming Methodologies
of Java, C and Assembly Language Programming

Khandare Nikhil B
Assistant Professor, Manav School of Engineering Technology, Akola.

Abstract: This paper is organized into four section here we
discuss the c, java and assembly language programming, First
section is Introduction, Second is Literature Survey, In
literature survey firstly we discuss c programming language
based on decision statement, loop control, case control,
functions, pointer, arrays, strings, structure and file handling
in c. Secondly we come to java programming language and
discuss data type, operators, Control Statements, Classes,
inheritance, Packages and Interfaces, Exception handling,
Thirdly in literature survey we discuss Assembly language on
Data transfer instruction, Arithmetic, Logical, Shift, Rotate,
Flag Control, Compare, Loop and loop handling instruction.
In Third Section of paper we make comparative analysis of
three programming language and finally the conclusion in
fourth section

Index Terms: Programming, Instruction, Factorial,
Arithmetic, String, Assembly language

1. INTRODUCTION

In today’s world knowledge is the power, more knowledge
you have, more powerful you become. Everything around
us is computerized; life is online now right from banking,
booking a ticket, shopping to ordering food everything is
online. What makes these things easy is the biggest
revolutionary device called computer, more specifically we
can say program which runs on the computer. Any program
which runs on computer is written by a programmer using
some programming language like C, C++, Java, Oracle,
Perl, Shell, Python, Assembly Language, Cobol etc. It is up
to programmer which language to choose to write a
program more specifically software, here in this paper we
compare the aspects of three programming language C,
Java and Assembly language.

2. LITERATURE SURVEY

In the literature Survey we discuss various attributes and
contents of c programming language, Java and Assembly
language programming
2.1 Programming in C: In this section we discuss various
aspects of c programming language
2.1.1 Decision Control in C: for taking decisions C uses
various conditional statements
2.1.1.1 If Statement
The general form of if statement looks like this
if (Condition)
{
Statement1;
Statement2;
.
..
Statement N;
}

The keyword if tells the compiler that what follows is a
decision control instruction. The condition following the
keyword if is always enclosed within a pair of parentheses.
If the condition, whatever it is, is true, then the statement is
executed. If the condition is false then the statement is not
executed
2.1.1.2 if-else Statement
The general form of If else statement looks like this:
if (Condition)
{
Statement1;
Statement2;
.
.
Statement N;
}
else
{
{
Statement1;
Statement2;
.
.
Statement N;
}

The if statement by itself will execute a single statement, or
a group of statements, when the condition following if
evaluates to true. It does nothing when the expression
evaluates to false, but in if Else statement, when the
condition is false statement or group of statement in else
part will execute
2.1.1.3 Nested If-else
It is perfectly all right if we write an entire if-else construct
within either the body of the if statement or the body of an
else statement. This is called ‘nesting’ of ifs. This is shown
in the following program.
main()
{
int k ;
printf ("Enter 65 or 66 ") ;
scanf ("%d", &k) ;
if (k == 65)
printf ("You Entered 65") ;
else
{
if (k == 66)
printf ("You Entered 66") ;
else
printf ("Wrong input") ;
}
}

Khandare Nikhil B/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 979-989

www.ijcsit.com 979

2.1.1.4 Else If Statement
Here is program that will demonstrate use of else if
Statements or else if ladder

Main()
{
int a,b,c,d,e;
printf(“Enter any Number between 1 to 5”)
canf(“%d”,&a);;
if(a==1)
printf(“You Entered 1”);
else if(a==2)
printf(“You Entered 1”);
else if(a==3)
printf(“You Entered 3”);
else if(a==4)
printf(“You Entered 4”);
else
printf(“You Entered 1”);
}

2.1.2 Loops Control Structure
In C programming language mainly three loop handling
instructions

1. For Loop
2. While Loop
3. Do-While Loop

2.1.2.1 For Loop
If the sequence of instruction is to be executed again and
again, we use loops most easy loop is for loop, General
syntax of for loop is
For (Initialization; Condition; Inc/Dec)
{
Body of Loop (or statements)
}
Example:
For(i=0;i<10;i++)
{
Printf(“Hello World”);
}
This piece of code will print the statement Hello World ten
times
2.1.2.2 While Loop
General syntax of for loop is
While (Condition)
{
Body of Loop(statements)
}
Example: Above Example can be written using while loop
as
Main()
{
Int i=0
While(i<10)
 {
 Printf(“Hello World”);
 i++
 }
}

2.1.2.3 Do While Loop
General Syntax of Do While Loop is
Do
{
Body of Loop(statements)
}While(Condition)

Example: Above Program can be Written using do while
Main()
{
Int i=0;
Do
{
Printf(“Hello World”);
i++;
}while(i<10);
}

2.1.3 Case Control Structure
Decision Using Switch, Switch is control statement that
allows us to make decisions from number of choices,
General Formal of Switch is:

Switch (integer expression)
{
case constant 1 :
{
Statement 1;
Statement 2;
.
.
Statement N;
Break;
}
case constant 2 :
{
Statement 1;
Statement 2;
.
.
Statement N;
Break;
}
case constant 3 :
{
Statement 1;
Statement 2;
.
.
Statement N;
Break;

}
default :
{
Statement 1;
Statement 2;
.
.
Statement N;

Khandare Nikhil B/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 979-989

www.ijcsit.com 980

Break;
}
}

Example of Switch:

Void main()
{
Int a;
Printf(“Enter a number between 1 to 5”);
scanf(“%d”,&a);
switch (a)
{
case 1 :
{
printf (" you entered 1\n") ;
break ;
}
case 2 :
{
printf ("You entered 2 \n") ;
break ;
}
case 3 :
{
printf ("You Entered 3 \n") ;
break ;
}
case 4 :
{
printf ("You Entered 4 \n") ;
break ;
}
case 5 :
{
printf ("You Entered 5 \n") ;
break ;
}
default :
{
printf ("out of range \n") ;
}
}
}
2.1.4 Functions
C program is a collection of functions, Every time function
is called control is passed to the calling function and when
the closing brace of function is encountered the control is
passed back to calling function

Example:
#include<stdio.h>
#include<conio.h>
void func(); //Declaration of function
void main()
{
func() ; //Call to Function
}

func() //definition of Function

{
printf ("\nCan't imagine life without C") ;
}
Mainly there are three important things about function
1. Function Declaration
2. Function Definition
3. Function Call

2.1.5 Pointers
Pointer in c are the variables which store addresses of other
variable, Consider the following piece of code
main()
{
int k = 7 ;
printf ("Address of k = %u", &k) ;
printf ("\nValue of k = %d", k) ;
printf ("\nValue of k = %d", *(&i)) ;
}
Output:
Address of k =65525
Value of k=7
Value of k=7

We can also have variables to store addresses eg. In above
code we can have a pointer variable to store address of k.
main()
{
int k = 7 ;
int *j ;
j = &k ;
printf ("\nAddress of k = %u", &k) ;
printf ("\nAddress of k = %u", j) ;
printf ("\nAddress of j = %u", &j) ;
printf ("\nValue of j = %u", j) ;
printf ("\nValue of k = %d", k) ;
printf ("\nValue of k = %d", *(&k)) ;
printf ("\nValue of k = %d", *j) ;
}

Address of k=65524
Address of k=65524
Address of j=655222
Value of j=65524
Value of k=7
Value of k=7
Value of k=7

2.1.6 Arrays
2.1.6.1 One Dimensional arrays
If we have to find the average of 25 numbers we will not
declare 25 integers instead we can use array of 25 integer
and one integer to store sum and another for average. We
can demonstrate the example as
main()
{
int avg, s = 0 ;
int i ;
int a[25] ; /* array declaration */
for (i = 0 ; i <25 ; i++)
{

Khandare Nikhil B/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 979-989

www.ijcsit.com 981

printf ("Enter marks ") ;
scanf ("%d", &marks[i]) ; /* store data in array */
}
for (i = 0 ; i <25 ; i++)
{
sum = sum + marks[i] ; /* read data from an array*/
}
avg = sum / 25 ;
printf ("\nAverage marks = %d", avg) ;
}

2.1.6.2 Multi-Dimensional Array
For Example we want to perform addition or subtraction of
two matrices, we know that Rectangular Array of M*N
numbers into M rows and N columns is Matrix, where
M=no of rows and N= number of Column
Eg. Program to Perform Addition or subtraction of two
Matrices can be done using two multi-dimensional arrays
#include<stdio.h>
#include<conio.h>
Void main()
{
Int a[3][3],b[3][3],c[3][3],i,j;
Printf(“Enter Elements of first matrix”);
For(i=0;i<3;i++)
{

For(j=0;j<3;j++)
{

 Scanf(“%d”,&a[i][j]);
 }
}
Printf(“Enter Elements of Second matrix”);
For(i=0;i<3;i++)
{

For(j=0;j<3;j++)
{

 Scanf(“%d”,&b[i][j]);
 }
}
Printf(“Addition/Subtraction of two matrices is”);
For(i=0;i<3;i++)
{

For(j=0;j<3;j++)
{

 C[i][j]=a[i][j] +or- b[i][j];
 }
}

// print addition or subtraction
For(i=0;i<3;i++)
{

For(j=0;j<3;j++)
{

 printf(“%d”,c[i][j]);
 }
}

2.1.7 Strings
Array of characters is called a string, here we discuss
various library function of strings

2.1.7.1 Strlen
This function counts the number of characters present in a
string. Consider the following program.
main()
{
char a[] = "Nikhil" ;
int l;
len1 = strlen (a) ;
printf (" length = %d", l) ;
}
Output: length=6
2.1.7.2 Strcpy
This function copies the contents of one string into another.
The base addresses of the source and target strings should
be supplied to this function
main()
{
char a [] = "Nikhil" ;
char b[20] ;
strcpy (b, a) ;
printf ("\nsource string = %s", a) ;
printf ("\ntarget string = %s", b) ;
}
Source string=Nikhil
Target String=Nikhil
2.1.7.2 Strcat
This function concatenates the source string at the end of
the target string.
main()
{
char a[] = "Nikhil" ;
char b[30] = "Khandare" ;
strcat (b,a) ;
printf ("\na = %s", a) ;
printf ("\nb = %s", b) ;
}
Output: a=Nikhil
 b=KhandareNikhil
2.1.7.4 Strcmp
This is a function which compares two strings until
mismatch is found or end of string is reached, function
returns zero if the string are equal and returns the difference
between ascii values of two strings
main()
{
char a[] = "nik" ;
char b[] = "khan" ;
int i, j, k ;
i = strcmp (a, "nik") ;
j = strcmp (string1, string2) ;
printf ("\n%d %d", i, j) ;
}
Output :0 -32

2.1.8 Structures
Structures provide a way of storing many different values
in variables of potentially different types under the same
name If data about say 3 such magazines are to be stored,
then we can follow two approaches

Khandare Nikhil B/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 979-989

www.ijcsit.com 982

main()
{
char a[3] ;
float p[3] ;
int pg[3], i ;
printf ("\nEnter names, prices and no. of pages of 3
books\n") ;
for (i = 0 ; i <= 2 ; i++)
scanf ("%c %f %d", &a[i], &price[i], &pg[i]);
}

2.1.9 File handling in c
Two main points to be discussed in file handling in c are
Reading from File and writing to file
2.1.9.1 Reading from file
#include <stdio.h>
#include <stdlib.h>
int main()
{
 char ch, file_name[25];
 FILE *fp;
 printf("Enter the name of file you wish to see\n");
 gets(file_name);
 fp = fopen(file_name,"r"); // read mode
 if(fp == NULL)
 {
 perror("Error while opening the file.\n");
 exit(EXIT_FAILURE);
 }
 printf("The contents of %s file are :\n", file_name);
 while((ch = fgetc(fp)) != EOF)
 printf("%c",ch);
 fclose(fp);
 return 0;
}
2.1.9.2 Writing to file
#include <stdio.h>
#include <stdlib.h> /* For exit() function */
int main()
{
 char c[1000];
 FILE *fptr;
 fptr=fopen("program.txt","w");
 if(fptr==NULL){
 printf("Error!");
 exit(1);
 }
 printf("Enter a sentence:\n");
 gets(c);
 fprintf(fptr,"%s",c);
 fclose(fptr);
 return 0;
}
2.2 Programming in Java
2.2.1 Primitive Types
Java defines eight primitive types of data: byte, short, int,
long, char, float, double, and Boolean. The primitive types
are also commonly referred to as simple types, and both
terms will be used in this book. These can be put in four
groups:

2.2.1.1 Integers: this group includes byte, short, int, and
long, which are for whole-valued signed numbers.
2.2.1.2 Floating-point numbers This group includes float
and double, which represent
numbers with fractional precision
2.2.1.3 Characters This group includes char, which
represents symbols in a character set,
like letters and numbers.
2.2.1.4 Boolean This group includes boolean, which is a
special type for representing true/false values.

Arrays
An array is a group of like-typed variables that are referred
to by a common name. Arrays of any type can be created
and may have one or more dimensions here is a program
that creates an array of the number
of days in each month.
// Demonstrate a one-dimensional array.
class Array {
public static void main(String args[]) {
int month_days[];
month_days = new int[12];
month_days[0] = 31;
month_days[1] = 28;
month_days[2] = 31;
month_days[3] = 30;
month_days[4] = 31;
month_days[5] = 30;
month_days[6] = 31;
month_days[7] = 31;
month_days[8] = 30;
month_days[9] = 31;
month_days[10] = 30;
month_days[11] = 31;
System.out.println("April has " + month_days[3] + "
days.");
}
}

Above piece of code will need jdk to execute. Commands
will be Javac Filename.java followed by Java Filename
2.2.2 Operators : Java Supports various operators
2.2.2.1 Arithmetic Operators: Following Arithmetic
Operators are supported by Java
+ Addition
– Subtraction (also unary minus)
* Multiplication
/ Division
% Modulus
++ Increment
+= Addition assignment
–= Subtraction assignment
*= Multiplication assignment
/= Division assignment
%= Modulus assignment
– – Decrement

2.2.2.2 Relational Operators
The relational operators determine the relationship that one
operand has to the other

Khandare Nikhil B/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 979-989

www.ijcsit.com 983

== Equal to
!= Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
2.2.2.3 The Bitwise Logical Operators Bitwise And,
Bitwise Or, Bitwise Not, Bitwise Xor.
2.2.3 Control Statement
2.2.3.1 Javas Selection Statement
2.2.3.1.1The if statement is Java’s conditional branch
statement. It can be used to route program execution
through two different paths. Here is the general form of the
if statement:
if (condition) statement1;else statement2;
2.2.3.1.3 Nested ifs
A nested if is an if statement that is the target of another if
or else. Nested ifs are very common in programming.
Here is an example:
if(i == 10) {
if(j < 20) a = b;
if(k > 100) c = d; // this if is
else a = c; // associated with this else
}
else a = d;
2.2.3.1.4 The if-else-if Ladder
A common programming construct that is based upon a
sequence of nested ifs is the
if-else-if ladder. It looks like this:
if(condition)
statement;
else if(condition)
statement;
else if(condition)
statement;
...
else
statement;
2.2.3.1.5 switch
The switch statement is Java’s multiway branch statement.
switch (expression) {
case value1:
// statement sequence
break;
case value2:
// statement sequence
break;
...
case valueN:
// statement sequence
break;
default:
// default statement sequence
}
2.2.3.2 Java’s iteration Statement
Java supports various Iteration Statements like while, Do-
While, For.
2.2.3.2.1 while

The while loop is Java’s most fundamental loop statement.
It repeats a statement or block while its controlling
expression is true. Here is its general form:
while(condition) {
// body of loop
}
The condition can be any Boolean expression. The body of
the loop will be executed as long as the conditional
expression is true.
2.2.3.2.2 do-while
The do-while loop always executes its body at least once,
because its conditional expression is at the bottom of the
loop. Its general form is
do {
// body of loop
} while (condition);
Each iteration of the do-while loop first executes the body
of the loop and then evaluates the conditional expression

2.2.3.2.3 For Loop
Here is the general form of the traditional for statement:
for(initialization; condition; iteration) {
// body
}
If only one statement is being repeated, there is no need for
the curly braces
2.2.4 Classes
2.2.4.1 Class fundamentals
A simplified general form of a class definition is shown
here:
class classname {
type instance-variable1;
type instance-variable2;
// ...
type instance-variableN;
type methodname1(parameter-list) {
// body of method
}
type methodname2(parameter-list) {
// body of method
}
// ...
type methodnameN(parameter-list) {
// body of method
}
}
The data, or variables, defined within a class are called
instance variables. The code is contained within methods.
Collectively, the methods and variables defined within a
class are called members of the class
2.2.4.2 Declaring Objects
Box mybox; // declare reference to object
mybox = new Box(); // allocate a Box object
The first line declares mybox as a reference to an object of
type Box. After this line executes, mybox contains the
value null, which indicates that it does not yet point to an
actual object

Khandare Nikhil B/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 979-989

www.ijcsit.com 984

2.2.4.3 Introducing Methods
classes usually consist of two things: instance variables and
methods. This is the general form of a method:
type name(parameter-list) {
// body of method
}
Here, type specifies the type of data returned by the
method. This can be any valid type, including class types
that you create. If the method does not return a value, its
return type must be void. The name of the method is
specified by name. The parameter-list is a
sequence of type and identifier pairs separated by commas.
2.2.4.4 Constructors
A constructor initializes an object immediately upon
creation. It has the same name as the class in which it
resides and is syntactically similar to a method. Once
defined, the constructor is automatically called immediately
after the object is created, before the new operator
completes consider a sample program which will
demonstrate class, method, constructor and objects
class Box {
double w;
double h;
double d;
.
Box() {//Constructor for the box
System.out.println("Constructing Box");
w = 10;
h = 10;
d = 10;
}
 // compute and return volume
double volume() {
return w * h * d;
}
}

class BoxDemo {
public static void main(String args[]) {
// declare, allocate, and initialize Box objects
Box mybox1 = new Box();
double vol;
// get volume of first box
vol = mybox1.volume();
System.out.println("Volume is " + vol);
}
2.2.5 Inheritance
2.2.5.1 Inheritance Basic
To inherit a class, you simply incorporate the definition of
one class into another by using the extends keyword.

// A simple example of inheritance.
// Create a superclass.
class A {
int i, j;
void showij() {
System.out.println("i and j: " + i + " " + j);
}
}
// Create a subclass by extending class A.

class B extends A {
int k;
void showk() {
System.out.println("k: " + k);
}
void sum() {
System.out.println("i+j+k: " + (i+j+k));
}
}
2.2.5.2 Using Super Keyword
Super has two general forms.

1. The first calls the superclass’ constructor.
2. The second is used to access a member of the

superclass that has been hidden by a member of a
subclass.

2.2.5.3 Creating Multilevel hierarchy
We can build hierarchies that contain as many layers of
inheritance as you like. As mentioned, it is perfectly
acceptable to use a subclass as a superclass of another. For
example, given three classes called A, B, and C, C can be a
subclass of B, which is a subclass of A. When this type of
situation occurs, each subclass inherits all of the traits
found in all of its superclasses. In this case, C inherits all
aspects of B and A
2.2.5.4 Method Overriding
In a class hierarchy, when a method in a subclass has the
same name and type signature as a method in its superclass,
then the method in the subclass is said to override the
method in the superclass. When an overridden method is
called from within a subclass, it will always refer to the
version of that method defined by the subclass
// Method overriding.
class A {
int i, j;
A(int a, int b) {
i = a;
j = b;
}
// display i and j
void show() {
System.out.println("i and j: " + i + " " + j);
}
}
class B extends A {
int k;
B(int a, int b, int c) {
super(a, b);
k = c;
}
// display k – this overrides show() in A
void show() {
System.out.println("k: " + k);
}
}
class Override {
public static void main(String args[]) {
B subOb = new B(1, 2, 3);
subOb.show(); // this calls show() in B
}
}

Khandare Nikhil B/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 979-989

www.ijcsit.com 985

2.2.6 Exception Handling
2.2.6.1 Using Try and Catch
To guard against and handle a run-time error, simply
enclose the code that you want
to monitor inside a try block. Immediately following the try
block, include a catch clause that specifies the exception
type that you wish to catch. To illustrate how easily this can
be done, the following program includes a try block and a
catch clause that processes the ArithmeticException
generated by the division-by-zero error:

class Exc2 {
public static void main(String args[])
{
int d, a;
try { // monitor a block of code.
d = 0;
a = 42 / d;
System.out.println("This will not be printed.");
} catch (ArithmeticException e)
{ // catch divide-by-zero error

System.out.println("Division by zero.");
}
System.out.println("After catch statement.");
}
}
This program generates the following output:
Division by zero.
After catch statement.
2.2.6.2 Throw, Throws and Finally
It is possible for your program to throw an exception
explicitly, using the throw statement. The general form of
throw is shown here: throw ThrowableInstance; If a method
is capable of causing an exception that it does not handle, it
must specify this behavior so that callers of the method can
guard themselves against that exception. You do this by
including a throws clause in the method’s declaration
finally creates a block of code that will be executed after a
try/catch block has completed and before the code
following the try/catch block. The finally block will
execute whether or not an exception is thrown

2.3 Assembly Language Programming
Assembly language Programming is completely dependent
on following Instruction
2.3.1 Data Transfer Instruction
These groups of Instruction makes possible to move data
around or inside microprocessor
2.3.1.1 MOV Instruction
Syntax is MOV D(Destination),S(Source)
This Instruction is used to transfer data from source to
destination, Allowed operands of move instruction

Destination Source
Memory Accumulator

Accumulator Memory
Register Register
Register Memory
Memory Register
Register Immediate
Memory Immediate

Example:
1. MOV AX,BX -this instruction will move the

content of 16 bit source register BX to 16 Bit
Destination Register AX

2. MOV AX,1234H –This Instruction will move
source immediate data 1234H to destination
register AX

2.3.1.2 XCHG (Exchange Data)
Syntax XCHG Destination, Source
Use: This instruction is used to swap the data. After
executing this instruction destination and source will swap
Example: XCHG AL,BL
 If AL=34H and BL=34H
After the execution of this instruction the contents of AL
and BL will exchange
2.3.1.3 LEA
Syntax: LEA Destination Source
This Instruction is used to load offset of Source memory
operand into one processor register

Example: Suppose in ALP one label ARR is used and we
want to access offset value in that label then instruction
LEA AX,ARR will perform the task

Instruction Syntax Use
LDS/LES LDS/LES Destination,

Source
First two byte of source
register are copied into
destination Register and next
two byte are copied into
corresponding segment
register(DS/ES)

XLAT XLAT Converts the content of AL
register into number stored in
memory table, this instruction
performs direct lookup
technique which often used to
convert one code to other

IN IN Accumulator, Port To read from Input port and
store in the Accumulator

OUT OUT Port,
Accumulator

Reverse of In Instruction,
Used to send 8 bit or 16 bit
data to output port

2.3.2 Arithmetic Instruction: This Group of instruction is
used to perform arithmetic operation
Instruction Syntax Use
ADD ADD

Destination,
Source

Destination = Destination +
Source

ADC ADC Destination,
Source

Destination = Destination +
Source+ Carry

INC INC Destination Destination = Destination + 1
SUB SUB Destination,

Source
Destination = Destination -
Source

SBB SBB Destination,
Source

Destination = Destination -
Source- Carry

DEC DEC Destination Destination = Destination - 1
MUL MUL Source AL=AL*Source
IMUL IMUL Source Same as MUL operand are

assumed to be signed numbers
DIV DIV Source AX=AX/source

Quotient in AL
Remainder in AH

IDIV IDIV Source Same as DIV operand are
assumed to be signed numbers

NEG NEG Destination Used to find the 2’s

Khandare Nikhil B/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 979-989

www.ijcsit.com 986

Instruction Syntax Use
complement of number in
Destination

CBW/CWD Convert Byte to
Word/
Convert Word to
Double Word

Used to convert Byte to Word/
Convert Word to Double Word

DAA DAA Decimal Adjust after Addition
used to convert result of
addition to decimal

DAS DAS Decimal Adjust after
Subtraction used to convert
result of subtraction to decimal

AAA AAA ASCII Adjust after Addition
used to convert result of
addition to ASCII

AAS AAS ASCII Adjust after Subtraction
used to convert result of
subtraction to ASCII

AAM AAM ASCII Adjust after
Multiplication used to convert
result of Multiplication to
ASCII

AAD AAD ASCII Adjust after Division
used to convert result of
Division to ASCII

2.3.3 Logical Instruction: This group of instruction is
used to perform Boolean operation on binary data
Instruction Syntax Use
NOT NOT Destination Instruction finds the

complement of binary data
stored in destination operand

AND AND Destination,
Source

This Instruction Performs
logical AND operation on
destination and source operand

OR OR Destination,
Source

This Instruction Performs
logical OR operation on
destination and source operand

XOR XOR Destination,
Source

This Instruction Performs
logical XOR operation on
destination and source operand

TEST TEST Destination,
Source

This Instruction is used to
examine the individual bit or
group of bit of destination
operand

2.3.4 Shift Instruction: this group of instruction is used to
left shift or right shift bitwise content of processor register
or memory location
Instruction Syntax Use
SHR SHR Destination,

Count
Shifts all bits in
destination operands to
right, LSB shifted out is
found in carry flag

SAR SAR Destination,
Count

Shifts all bits in
destination operands to
right, MSB shifted from
left side. LSB shifted out
is found in carry flag

SHL/SAL SHL/SAL Destination,
Count

Instruction is similar to
SHR and SAR,
Destination bit will be
shifted to left both SHL
and SAL will give same
result

2.3.5 Rotate instruction: This group of Instruction is used
to rotate left or right content of processor register or
memory location

Instruction Syntax Use
ROL ROL Destination,

Count
Bits get rotated out of
MSB position are rotated
back into LSB, copy of
bit rotated out of MSB is
placed in carry flag

ROR ROR Destination,
Count

Bits get rotated out of
LSB position are rotated
back into MSB, copy of
bit rotated out of LSB is
placed in carry flag

RCL RCL Destination,
Count

Similar to ROL but bits
are rotated through carry

RCR RCR Destination,
Count

Similar to ROR but bits
are rotated through carry

2.3.6 Flag Control Instruction: Used to make changes in
specific bit of flag register
Instruction Syntax Use

LAHF LAHF Transfer rightmost 8 bit content
of Flag register into AH

SAHF SAHF Transfer Content of AH to
rightmost 8 bit of flag register

CLC CLC Used to clear Carry flag
STC STC Used to set carry flag
CMC CMC Used to complement carry flag
CLD CLD Used to clear direction flag
STD STD Used to set direction flag
CLI CLI Used to clear interrupt flag
STI STI Used to set interrupt flag

2.3.7 Compare Instruction
Instruction Syntax Use

CMP CMP
Destination,
Source

Perform comparison of one byte
or word data, internally it
performs subtraction of source
operand from destination
operand

2.3.8 Loop and Loop Handling Instruction: Instruction
are specially designed to implement loop operation
Instruction Syntax Use

LOOP LOOP <Short-
Label>

CX=CX-1
If CX!=0 then
jump to target
address

LOOPE/LOOPZ LOOPE/LOOPZ
 <Short-Label>

CX=CX-1
If CX!=0 &&
ZF=1then jump to
target address

LOOPNE/LOOPNZ LOOPNE/LOOPNZ
 <Short-Label>

CX=CX-1
If CX!=0 &&
ZF=0then jump to
target address

JCXZ JCXZ <Short-
Label>

Jump if CX=0

3. COMPARISON ON THE BASIS OF VARIOUS ISSUES

1. We will examine the methodology of programming in
different languages; consider a program to find the factorial
of the number N in C, Java and ALP

Khandare Nikhil B/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 979-989

www.ijcsit.com 987

C Program Java Program Assembly language program
#include<stdio.h>
#include<conio.h>
void main(){
 int i,f=1,num;

 printf("Enter a number: ");
 scanf("%d",&num);

 for(i=1;i<=num;i++)
 f=f*i;

 printf("Factorial of %d is:
%d",num,f);
 getch();
}

import java.util.Scanner;
 class Factorial
{
 public static void main(String args[]) {
 int n, c, fact = 1;
 System.out.println("Enter an integer to
calculate it's factorial");
 Scanner in = new Scanner(System.in);
 n = in.nextInt();
 if (n < 0)
 System.out.println("Number should be
non-negative.");
 else {
 for (c = 1 ; c <= n ; c++)
 fact = fact*c;
 System.out.println("Factorial of "+n+"
is = "+fact);
 } }}

MOV AL,N
MOV BL,AL

XYZ: DEC BL
JZ EXIT
MUL BL
JMP XYZ

EXIT:MOV[FACT],AL

For loop is used to calculate factorial
of a number in above piece of code,
from 1 to number

For loop is used to calculate factorial of a
number in above piece of code, from 1 to
number, but everything is written inside
class

Loops can be used but jump to a label is
used here to calculate factorial of a
number

3.2 Addition, Subtraction, Multiplication and division (arithmetic operation)of two numbers in C, Java and ALP
C code Java Code ALP
#include<stdio.h>
Void main()
{
Int a,b,c,d,e,f;
Printf(“Enter 2 numbers”);
Scanf(“%d %d”,&a,&b);
C=a+b;
D=a-b;
E=a*b;
F=a/b;
Printf(“addn,sub,mul,div is %d %d
%d %d”,c,d,e,f);
}

class BasicMath {
public static void main(String args[]) {
// arithmetic using integers
System.out.println("Integer Arithmetic");
int a = 1 + 1;
int b = a * 3;
int c = b / 4;
int d = c - a;
int e = -d;
System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("c = " + c);
System.out.println("d = " + d);
System.out.println("e = " + e);

Addition
MOV AX,0012H
MOV BX,0003H
ADD AX,BX
SUB AX,BX
MUL BX
DIV BX

Here addition is stored in c,
subtraction in d, multiplication in e,
division in f

Here addition is stored in a, subtraction in d,
multiplication in b, division in c, negation in e

Here register AX is loaded with value
12H and BX with value 03H Addition,
subtraction, multiplication and division
all re stored in AX (accumulator)

3.3 Use of pointers distinguished the three programming methodologies in c pointers are used, but in java there are no
pointers and in assembly language we play directly with the memory but this is not specifically mentioned that assembly
language uses pointers
C Java ALP
Here pointers are the variable that store the
address/ location of another variable

Consider the following code
#include<stdio.h>
Void main()
{
 int a,,b,c;
 a=7;
 int *p;
p=&a;
//here p is pointer
Printf(“value of a is %d”,a);
Printf(“address of a is %u”,&a);
Printf(“address of a is %u”,p);
Printf(“value of a is %d”,*(&a));
Printf(“value of a is %d”,*p);
}

There are No pointers in java We save information directly in
1. CPU registers
2. Memory location

But there are no variables which store
the address of another variable

We can store memory location into
registers.

Khandare Nikhil B/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 979-989

www.ijcsit.com 988

3.4 Graphical User Interface can be developed easily and
perfectly in java using applets and abstract window toolkit,
In c we can develop GUI using graphics library but it is
very difficult in c, In ALP printing a message on screen
needs tens of lines of code developing a nice GUI is
practically impossible in assembly language.
3.5 Depending upon the Jump Statements and loops used in
the programming language we can further distinguish the
languages
C Java ALP
While
Do-While
For
Break
continue

While
Do-while
For
For-Each
Break
Continue

LOOP
LOOPE
LOOPZ
LOOPNE
LOOPNZ
JMP
JE/JZ
JNE/JNZ

3.6 Each language has its string handling function
C Java ALP
Strlen() – to
find length
Strcmp() – to
compare string
Strcat() – to
concatenate
Strcpy() – to
copy string
Strrev() – to
reverse string

Equals()
Startswith()
Endswith()
Compareto()
Substring()
Concat()

MOVSB/MPVSW –
to move
CMPSB/CMPSW –
to compare
SCASB/SCASW – to
scan
LODSB/LODSW- to
load
STOSB/STOSW – to
store

3.7 Comparison on the basis of logical instruction: No
matter where you go, which school you study, which
university you attend, which book you read the following
table will not change at all
A B A |

B
A
&
B

A
xor
B

~ A ~(a&b) ~(a|b)

0 0 0 0 0 1 1 1
0 1 1 0 1 1 1 0
1 0 1 0 1 0 1 0
1 1 1 1 0 0 0 0
The change is in the way these instructions are used in the
programming languages. Suppose we have to perform
AND operation on data, c will use (a&&b), whereas ALP
will use AND AX,BX and java will use a&b, results will
not differ but the way of using differs a lot.

4. CONCLUSION
We have discussed difference between the programming
methodologies of three programming languages on
different issues, We also took specific example of finding a
factorial of a number in three programming languages.
Coding was done to perform arithmetic operations in c,
java and alp, pointers contributed significantly to the
discussion of comparison of the methodologies. Array of
characters ie. Strings are used in all three programming
languages but library functions and their use shows
significant difference, similarly for GUI Java is perfectly
suitable for GUI, in c its difficult in ALP it’s nearly
impossible. If one language is good at one place it has
flaws at other place, one liner or a closing line to this is
each programming methodology is perfect at its own place
and their beauty comes out depending upon the application.

REFERENCES
[1] Herbert Schildt ”The Complete reference Java Seventh

Edition”, Tata McGRAW-HILL publicationISBN-13:978-0-
07-063677-4

[2] Yashwant Kanetkar- Let us C BPB publication ISBN 978-
81-8333-163-0

[3] Pankaj Jalote, “An Integrated Approach to Software
Engineering”, Springer Science Business Media, Inc, Third
Edition, 2005.

[4] Grady Booch, “Object-Oriented Analysis and Design with
applications”, Addison Wesley Longman, Inc, second
Edition, 1998.

[5] Roger S. Pressman, “Software Engineering a practitioner‟s
approach”, McGraw-Hill, 5th edition, 2001.

[6] Kernighan and Ritchie The C Ansi C Programming language
ISBN:978-81-203-0596-0

[7] Barry B. Brey, “The Intel Microprocessors” ISBN-13: 978-
0135026458 ISBN-10: 0135026458

AUTHOR

Khandare Nikhil B. has Batcher of technology degree in
Information Technology from College of Engineering, Pune
(COEP) and also has Master of Technology Degree in Computer
Engineering from Veermata Jijabai Technological Institute,
Mumbai (VJTI), Presently Working as a Assistant Professor at
Manav School of Engineering Technology, Akola.

Khandare Nikhil B/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 979-989

www.ijcsit.com 989

